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A b s t r a c t - A n  analysis has been performed of the capacity of intermediate storage vessels required to buffer the 
effects of periodic production failure. Simple analytical expressions for the limiting volume of the storage as a function 
of failure frequency and system parameters have been developed for SISO storage system under the assumption 
that system variables were integer number. All these simple analytical expressions are directly useful for detetanining 
the storage size and are the bases for more advanced engineering study such as; operations research, controller 
design and process synthesis. 
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INTRODUCTION 

Noncontinuous processes have played and will continue to play 
an important role in the chemical industry because of the flexibil- 
ity they provide to accommodate significant variability in feed 
materials, their suitability for producing large number of moderate 
value products with similar recipes, and their turn-down feature 
which allows ready adaptation to the inherent seasonability of 

the market demand for some products. 
This kind of process which is intentionally operated in a non- 

steady state mode is subject to various process imbalances. In 
multistage noncontinuous processes without intermediate storage, 
uninterrupted operation is possible only if the successive stages 
of processing are perfectly synchronized or the batch equipment 
itself is used as storage vessels. In this case, installation of inter- 
mediate storage will decouple the periodic operation of adjacent 
batch or semicontinuous units; consequently, intermediate storage 
can take on an important role for improving operating efficiency. 
In addition, batch operations are usually subject to higher proces- 
sing variability and more subject to operator vagaries and error. 
These kinds of process parameter variations as well as those cau- 
sed by equipment failure and associated repair times can also 
be mitigated through intermediate storage if adequate size of in- 
termediate storage and the initial hold-up are chosen appropri- 
ately. Moreover, intermediate storage can isolate intermediates 
when noncontinuous processes are used to produce m'altiple prod- 
ucts in sequential campaigns. Due to these kinds of ~arious roles 
of intermediate storage, the addition of it gives positive conse- 
quences on process operation. However, because of the numerous 
roles that intermediate storage serves, it is difficult to specify 
its most effective location and required size-in the process. 

Simulation techniques are the most common tools employed 
for this kind of analysis. Numerical simulation using Monte Carlo 
techniques can be employed for the analysis of intermediate sto- 
rage availability (Ross 1973). Analytical models which have been 
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studied recently are effective tools for intermediate storage analy- 
sis. Karimi and Reklaitis (1983) developed analytical results for 
the limiting storage volume in serial systems composed of arbi- 
trary configurations of batch, semicontinuous or continuous op- 
erations. They extended their results to multiple input/multiple 
output intermediate storage structure (Karimi and Reklaitis 1985 
a) as well as parametric variation case (Karimi and Reklaitis 1985 
b, c) The main idea of their successful results was to assume 
periodic material flow which enabled to use powerful Fourier se- 

ries properties. The same method has been applied for the peri- 
odic material flow including periodic production failure by Lee and 
Reklaitis (1988 and 1989). 

This article represents systematical procedure to obtain the 
analytic solution of the limiting volume of single input/single out- 
put(SISO) intermediate storage under periodic production failures 
which include no failure case as a subsystem. The unique feature 
of this study is that the whole modelling step is remarkably sim- 
plified by deleting Fourier series development and generalizing 
production failure pattern. Our main technique to get the goal 
can be summarized as the Algebra of Modulus Operators and 
Integer Division Result (APPENDIX A). This study will directly 
contribute to reducing the overinvestment of storage space and 
facilities in real chemical industries as well as providing an effec- 
tive modeling technique to develop inventory control policy in 
noncontinuous processes. 

PROCESS MODELLING 

The schematic diagram of relevant process and design variables 
are shown in Fig. 1. The subscript i=  1 represents up-stream 
unit and i = 2  does down-stream unit. Each unit is supposed to 
produce a batch of product during every cycle time (COl) and after 
"r', cycles, production failure of duration (di) will occur periodically. 
The cycle time of a batch unit is composed of a transport time 
(x,o~,) and a non-transport time. The non-transport time is the 
sum of processing, filling (discharging) and preparation time for 
up-stream (down-stream) unit and their details are not of interest 
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Fig. 1. Modelling of  intermediate storage with periodic process failure. 

for the purpose of this study. The starting time of inflow from 
the up-stream unit is assumed to be zero, without loss of general- 
ity, and that of the outflow to the down-stream unit is assumed 
to be ya(0z, which is called the initial delay time. The first produc- 
tion failure is assumed to occur after ~, cycles. It is convenient 
to define some additional parameters; the overall cycle parame- 

ters (Ta,) and ~,, as: 

~,=yi(0,+ d, (1) 

K,= ~i(0,+ di (2) 

The design parameters for no failure case were based on the 
use of rational number which is adequate for engineering purpose 
(Yi 1992). However in this article we have to restrict some of 
the design parameters to integer value. We will inw:stigate the 
relaxation of this restriction through simulation study subsequent- 

ly. 

Basic Assumptions; 

(i) (0, and d, are integers, i - l ,  2 (3) 

(ii) GCD((01, co~)= 1 (4) 

where GCD(.,.) is the greatest common divisor. 
The overall material balance on this system gives: 

B~yi B=,u (5) 
(0~ (02 

The flow pattern, which include periodic production failure, i:~ 
shown in Fig. 1. The material balance around the storage unit 
reduces to a simple ordinary differential equation (Yi 1992). 

dV(t) _ F~ (t)u[t -K~] + ~ B~ - F~ (t)u[t-~.,  - ye(0~] - ~ Be (6) 
dt 

where F,(t) is defined in Fig. 1 and u[.] is unit step function. 
There are three situations to be considered in integrating Eq. 

(6) as shown in Fig. 2. The present time t can occur either during 
a failure time, during a non-transport time or during a transport 
time period. We can count the number of complete hatches and 
calculate the incomplete hatch size in each case via modulation 
operators. Combining three expressions with the minimum func- 

Fig. 2. Integration of  material flow function with periodic process fail- 
a r e .  

tion produces the following integration of flow under periodic 
failures: 

f t  ~ ~' ~'~ int[ t-~,~y,(0,(0, ]+man{y,  

int[res[ t-~u----Yi(0i l a l +  mintl,  
~s J (0t J 

ires[res[ t-K,-yi(0, j~ . . .  (7) 

The hold-up equation for this system is; 

V(t) = V(0) + F1 (t)dt - F=,(t)dt + r j B~ - K.., B, (8) 

where t2max{~l, K~+y2(02}. 

The maximum and minimum hold-up is necessary in order to 
calculate storage size. This hold-up equation is periodic with the 
period of (0r The local optimal points must occur at the edge 
points of flow within one period, the same as no failure case (Ka- 
rimi and Reklaitis 1983). Thus, it can be shown that: 

If U~U~ (Up-stream Dominant Case) 

t~,,,~ + c~, ~ + 8, ~ +~-, (9) 

i + t,,~ = cq (0 8 1 ~ l + r l + x l ~ :  (10) 

where 0"<ctl_<~ - 1, 0-<Sl~<yl- 1 

If U~<U.z (Down-stream Dominant Case) 

t~,~, = a-_, ~,., + 5a (02 + Y2 (0~ + r'-' (12) 

where 0Kct~Kmt- 1, 0 g g ~ y _ , -  1 

The continuous search variable t can be changed into the finite 
integer search variables 0~ and 5, by inserting Eqs. (9)-(12) into 

Eq. (7) and (8). 
There are four cases which must be considered in order to 

carry." out algebraic manipulation: minimum hold-up in up-stream 
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dominant case, minimum hold-up in down-stream dominant case, 
maximum hold-up in up-stream dominant case and maximum 
hold-up in down-stream dominant case. There is great similarity 
between the four cases but they do differ in detail. The tirst case 
will be considered here and the others are given APPENDIX 
B. 

MINIMUM HOLD-UP IN U P - S T R E A M  DOMINANT CASE 
( U I  ~__V2) 

Eq. (9) is inserted into Eq. (7) and each term in Eq. (7) can 
be developed further such as; 

t~ ,_-~ = cq + 5'-0)' (13) 
0)~ CO1 

res = -~= 

, n t [ r e s ( ~ ) ~ - ~ ]  = 8, 

r e s [ r e s ( ~ ) ~ ]  = 0  (14) 

~ . -  2-y2(0. _ eh~+8~0)~+K~--K2--int[-y~0).~]-- 1 
0)2 (02 

+ 1 -  res[y2(02_] (15) 
(t~2 

Two steps of modulation procedure for cq have to be applied 
to convert search variables cq and 6~ into more convenient search 
variables, a~' and a,", following the procedure of modulation of 
variables given in APPENDIX A. 

ch ~ + 8~ 0)~ + K~ - ~2 - int[yz 0)2] - 1 - q~'~ + cq' (16) 

where 0 K c h ' ~ 2 - 1 .  

e l '  = q1"0)2 + a l "  (17) 

where 0-<cry"K(02- 1. 

The down-stream terms in Eq. (7) can he resolved via new 
search variables. 

int[ t~, - ~:-~- Y~ (02] = q( 
k 0~2 J 

-~--,.2 ] res[t~, y~ ~o2 ct2' + 1 --_res[-ya 0)2] 
/ J L (02 0)2- 

res[res[t2, .-~_- y2(0~1 ~-.'~ ] _ a,"+ 1 -  res[y2(02J (18) 
L L 0)~ J 0)2 J 0):' 

Inserting Eq. (7), (14) and (18) into (8) produces; 

\ 0)2 / 

+ V(0) + ~, B , -  ~ B2-  B~ y2(~,- ~ -intLy20~3 1) 
0)2 

- B 2 ( -  u +min{y2, ql" 
(02 

+min{1, a~"+ 1--res[_y2(0a]}}] , (19) 

The first term of Eq. (19) can be removed using Eq. (6). The 

coefficient of 6t in the second term of Eq. (19) is positive which 
means the minimum of the hold-up function occurs when 51 is 
minimum: 

min V(t~.)(5,) = V(t~.)(6, = 0) 

= V(0)+ K,B~ - Kz B2 B2"r2(K~ - Ks-int[-y20~] - 1) 
(02 

+ B 2 [ - y 2 a l '  +min{y2, qff+min{1, 
0)2 

1-re<, 0)qt 1 - . . j  (20) 

It is necessary to separate the Span of our independent search 
variables into the three parts within which the hold-up is linear 
with respect to the search variables in Eq. (20), namely; [cq'>)'2 
(02}, {a(<y2(02 and x20~2-1+res[-y2(0z]Kch"} and {cq'<y2(02 and 
x20)2- 1 + res[y2(02] ~ch"}. 

(i) cq'~y2 (02 (21) 

In this case, the following useful relationships are valid: 

ql"~Y2 (22a) 

min{),~, q~" +---} = T2 (22b) 

Inserting Eq. (22b) into (20) produces; 

V(t~.) = V(O) + K, B, - K2 B2-  B2 002 (KI - -  K2--_int [yz o~] -- 1) 

+ B 2 ( ~ - T 2 )  (23) 

Now, a, '  is the only remaining search variable. The minimum 
of hold-up occurs when ct,' is minimum because the coefficient 
of a , '  is positive. 

min V(t~,)(cq') = V(t~,)(a,' =),2 ~ )  = V~, 
al 

= V(0)+ K,BI-  (K2 + y2)B2 
B2)'2 ( - Y2 (02 + K1 - 1(2 - intl-y2 0)2] - 1) 

- (24) 
(02 

(ii) ctf<y20)2 and x2(02-1+resEy~0)2]Kch" (25) 

In this case, the following useful relationships are valid: 

min{1, a ,"+  1-res[-y2(02] }= 1 (26a) 
X2 0)2 

min{y2, q(' + min{.-- ]} = q~" + 1 (26h) 

Inserting Eq. (26b) and (17) into (20) produces; 

B2 T2(~-- K~- int[y2 (0z] - 1) V(t~.) = V(0) + K1Bl-- K2 B2 
0)2 

+ B'[ Y~-u~' + ( 2 L  (02 \~-2u 1)qa"-- 1 ] ,  (27, 

Since the coefficient of cq"is positive and that of q~" is negative, 
ch" has to be decreased and q~" increased to minimize hold-up. 
Thus, 

min at" = int[-(x2 + Y 2 ) 0 ) 2 ]  - -  int[-yz (02] (28,3) 

max ql"=y2 - 1 (28b) 

Then, the minimum hold-up is: 
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�9 I tt 
mtn  V(~. ) (a t  , q~") 
at #1 

tt ~ __ 2 =V(t~ . ) (min  cq ,  max q~ ) - V ~ .  

= V(0) + n~ B ~ -  (~2 + y2)B2 

B2 y 2 ( -  (y2 - 1)o~z + ~q -_~2 - int[(xz + y2)o~z] - 1) (29) 
(02 

The  left side of second inequality in Eq. (25) should not be g rea te r  
than o )2 -1 .  A restriction is imposed on Eq. (29). 

RESTRICTION SI:  r e s l - y z ~ ] K ( 1 -  x2ko2 

(iii) ch'<yzo)2 and x 2 c o z - - l + r e s [ y z o ) 2 ] ~ a l "  (30) 

In this case, the  following useful  re la t ionships  are valid: 

min{l ,  a ( '  + 1 - res[yzcoz] .} = a / '  + 1 - res[y~ coz] (31a) 
x2 0)2 X~ 602 

minly2, qf'+ min{--' }} = qt" 4 c t ( '+  1 - r e s [ y 2 c o 2 ]  (31b) 
X2 O37 

Inser t ing  Eq. (31b) and (17) into (20) produces;  

8 2 y 2  ( K I -  K2 - -  int[-y~:o2] - 1) 
V(t~.) = V(0) + ~ B ~ -  ~2 B2 

co2 

+B2[(y2__ 1 la , ,+(y2o>2 _ ~ l - r e s [ y 2 o ~ ] ]  

(32) 
Since the coefficients of ~ ( '  and qt" are negative, a t"  and q~" 
have to be increased to minimize hold-up. Thus,  

max cq"= int[(x2 + Y2)o)z] - int[y2 co~] - 1 (33a) 

max q ( ' = y z -  1 (33b) 

Then,  the min imum hold-up is; 

B z y d -  ( ~ -  1) + ('/~ - lkot + ~, - K2 + int[x~ o)1 - Yz~] )  

~ 2  

(A32) 

V~... = V(0) + (~x + yOB~ - 0:2 + 1)B, 
Bz' t~(-  ( ~ -  1) + ('/1 - 1)(ol + n~ - ~2 + int[x~ o~ - Y2 o~]) 

0)2 

B2 res[xt  co~ - yz o)2] 
V~,,, = V(O) + 0:t + y,)B1 - ~2 B z -  

X2 O)'~ 

B~ Yz((Y~- 1)col + K t -  ~2 + int[  xt to~ - Yz to2]) 
m 

0)2 

(A36) 

(A40) 

V~,, = V(0) + ~ B~ - ( ~  + yz)Bz 

_ B2 Yz( - Y2co2 + ~1 - -  ~2  - -  intEy~ (o2] - 1) 
CO2 

(24) 

2 + V,i ,  =V(0 )  r t B t -  (rz+yz)B2 
Bz"Fd- (Y~ - 1)o)2 + K~ - rz - intE(xz + yz~:oz] - 1) 

0)'2 

B2 resE(x~ + y0o)2] 
V~,, = V(0) + ~ B~ - (K2 + yz)B2 + 

X2 CO~ 

Bz y~( -  (Yz- 1)co2 + ~ - ~2 + int [ (x2 + yz)coz]) 
602 

Down-s t ream Dominant  Case (U~-<U2) 

V~.,. = V(0)+ (K~+ y O B l -  (Kz + y2)B2 

+ 
O)~ 

(29) 

(34) 

B1Yl(-  (~x - 1) + (Y2 - 1)~z - KI + ~2 + intEx2 + Yz)co2]) 

(A12) 

max V(~.)(at" ,  qt") 
al ql 

=V(t~ . ) (max ch", max ql")=V:t..,. 

B2 res[(x2 + Yz)coz] 
= V(0) + K1 Bi - (K2 -r yz)B2 + 

X2 0.)2 

B2 y 2 ( -  (Yz- 1)(o2 + K" L -  K2 - -  int [(xz + Yz)coz]) (34) 
CO2 

Since the  left side of second inequality in Eq. (30) should not 
be less than 0, a restr ict ion is imposed on Eq. (34). 

RESTRICTION $2: xzcoz~ l -  resEyzcoz] 

Eqs. (24), (29) and (34) give th ree  candidates  for the  global 

min imum hold-up subject  to two parametr ic  restrict ions.  Careful  
comparison be tween  these  equat ions  reveals  that  the  hoht-up cal- 
culated by Eq. (29) is less than that  by Eq. (24). If sys tem parame-  
ters  violate RESTRICTION S1, Eq. (29) is not valid and Eq. (24) 
and (34) are the  candidate of global minimum. If sys tem parame-  
ters  violate RESTRICTION $2, Eq. (34) is not valid and Eq. (29) 

is the only global minimum.  

S T O R A G E  V O L U M E  

Summarizingly,  all per t inen t  equat ions from the previous  sec- 

t ion and APPENDIX B, we obtain: 
Up-s t ream Dominant  Case (Ux~U2) 

V' = V(0) + (K~ + yOB~ - (r., + yz)Bz max 

V~,. = V(0) + (K1 + 1)B1 - (Kz + yz)B2 
Bzy2 ( - (cot - 1) + (Yz- 1)coz- ](1 - ~  1(2 ~'- intl- xz + yzkoz]) 

602 

.:, + B~ res[(x2 + yz)o>e] 
V,.,. = V(0) + K t B1 -- (1(2 + yz)B2 

Xlo)I  

+ B1 Yl((Y2 - 1)o).,- K1 + K2 + int[-(x2 + yz)co:~]) 

(A16) 

(A2o) 

VI.~. = V(0) + (KI + yOB1 - Kz B2 

+ B1 YI( - ylcol - K 1_+ K2 + intEy2 co2]) (A52) 
col 

V ~  = V(0) + (Kt + yt)B, - K2 B2 

+ B1 y l ( -  (Yl - -  1)col - KI + r_~ - int[xl  o)1 --Y2 coz] - 1) (A57) 
COl 

B~ rest-x~ col - Yz,Coz] 
V~ .  = V(0) + (~l + y1)B~ - K2 Bz- 

Xlco l  

~" BlgK--(yl--1)o)l--Kt_+K2--int[-x~o)t 'Y2co2]) (A62) 
COl 

Careful  compar ison of th ree  m a x i m u m / m i n i m u m  hold-up ex- 
press ions  shows that one of t h e m  can be dele ted and the  remain ing  
two express ions  can be combined into one to yield: 

Up-s t ream Dominant  Case (UI~Uz) 

V-',.~. _< V 1,.~ (35a) 
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V'~,. ~ V2.,. (35b) 

V,~, = max{V'.=, V3.,,} 
= V(O) + (K, + ~,,)B, - ,(2B~ 

B~_yz {(u lko, + r , -  ~r + int[ x, w , -  Y2 taz]} 
toz 

B~yz min{1, ~2res[x~o~-y~o~]} (36) 
to~ x2 Yz 

V.,,. = minlV~.,.. "v'~,.I 

= V(0) + ~ B~ - (~a + "ta)Ba 

B~_'te { _ (y~ _ 1)~ + ~ -  xa + int Ix2 + y~)~] t 

+ BLY~min{1 ' ~ re s [ (x~+y~)~]}  (37) 
ore xzyzo~ 

Dowm-stream Dominant Case (Ut<U2) 

vL.>vL (~Sb) 

V.. = m~tVL, V~t 
-- V(0) + (tq + u - ~ I72 

BLT' [(y~ - 1Rot + ~t - ~2 + int[x~ tot - y~ ~ ] ]  
(o2 

~-,_~2 min{ i. ~, res[x,r y~ o~z] } (39) 

V.,. = minlW.,.. V~,.} 

= V ( 0 )  + tot Bt - (tcz + y2)B~ 

B2_'1'2 t - (Y~ - 1),.o2 + K, - ~2 + i n t [ ( x 2  + y~)o~ ] } 
o>z 

+ B2_.y2 min{1, o),res[(xz+y2)to~]} (40) 
tOz x~ ~ (o~ 

Comparing the equations between two cases shows that they are 

the same except for the terms ~o~ or . .~  . If we 

set the parameters to those of the no failure case, namely ~,.= 1, 
~,:K,=O, o~=~ot=l~ and r I~, then, the equations reduce 
to exactly the same as those of no failure case which were devel- 
oped independently in Yi (1992). 

V,..~ = V(O) + B, 
Bj ' - ~ ; (  int[x~ ~2-y2 ~1] + min{ 1, res[x113Z-x, y2 ~t]t]-/ (41 )  

V.,. = V(O) + Bz 

_B t/. . + +min,~l, res[(x2+y~)13t.] 
i~mt[(x2 Y2)P,] t ~ t)  (42) 

where k= 1 for Ut_~U~ 
k=2  for U~>U2 

It should be noted that Eq. (41) and (42) are still valid when 
the cycle times are rational number and are not prime to each 
other in spite of the basic assumptions (i) and (if) 

Let us emphasize the restrictions and their related equations 
again. 

Fig. 3 .  H o l d - u p  prof i le  o f  e x a m p l e  with  real  v a l u e d  c y c l e  t imes .  

RESTRICTION 54: xt tot2resl-(x2 + y~)~,J Eq. (A20) 
RESTRICTION $ 5 : 1  - res[x~ to, - y~ o~] K(1 - x2ko-~ Eq. (A36) 
RESTRICTION $6: xz<o~>res[x~w~ yzto2] Eq. (A40) 
RESTRICTION $7: ( 1 -  x~)to~2 1 - res[y2o_~] Eq. (A57) 
RESTRICTION $8: x~to~>res[yzto2] Eq. (A62) 

Each restriction is connected with the validity of the equation 
from which it derives. For example, if desig~ parameters violate 
RESTRICTION S1, Eq. (29) is not available and the minimum 
hold-up can be calculated by Eq. (24) and (34) in Ulystream domi- 
nant case. RESTRICTION $3 and $5 are not necessary because 
their corresponding equations can not become the maximum or 
minimum of hold-up from Eqs. (35a) and (38b). The global maxi- 
mum or minimum when system parameters violate one of the 
restrictions can be summarized as follows: 

Up-stream Dominant Case (U~2U2) 

Violation of RESTRICTION S1.. V,,,,= min{V~,,, V~,,,,} (43a) 
Violation of RESTRICTION 92.. V,,, = V~,. (43b) 
Violation of RESTRICTION $6.. V== :: V~,~ (434:) 

Down-stream Dominant Case (U~gU~) 

Violation of RESTRICTION 54.. V,,,.=W,,, (44a) 
Violation of RESTRICTION $7.. V,,==max{V~,,=, V~,,} (44b) 
Violation of RESTRICTION $8.. V ~  =VZ,,~ (44c) 

If the restrictions are examined carefully, they eliminate the 
parametric domain with large x2 (RESTRICTION S1). small x2 
(RESTRICTION $2 and $6), large x~ (RESTRICTION $7) and 
small x~ (RESTRICTION 54 and $8) which are unusual in prac- 
tice. 

The maximum/minimum hold-up equations developed in this 
study can be utilized to calculate the storage size and initial inven- 
tory in conjunction with the following conditi,ms (Karimi and Rek- 
laitis 1983): 

V,.,~<V, (45a) 

V.,.~O (45b) 

RESTRICTION SI: r e s [ y 2 ~ ] K ( 1 -  x2~. 
RESTRICTION $2: x 2 o ~ ; ~ l - r e s [ y ~ ]  
RESTRICTION $3: (1  - x~);? 1 - res[(x2~- y~ho2] 

Eq. (29) 
Eq. (34) 

Eq. (At6) 

D I S C U S S I O N  AND SIMULATION EXAMPLES 

The basic assumption (i) [Eq. (3)] restrict,i cycle times and fail- 
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APPENDIX A: M o d u l a t i o n  o f  Variables  

Fig. 4. Hold-up profile of example with integer valued cycle times. 

ure durations to integer values in the SISO storage under peri- 
odic failure. The storage designer can scale the system parame- 
ters to make cycle times and failure times integer valued but 
this can be very inconvenient. Extensive simulation has shown 
that this integer restriction can not be relaxed to rational numbers 
in general. Specifically, the simulation showed that if the basic 
assumptions are violent, the maximum/minimum hold-up calculat- 
ed using rational numbers would approximate the actual values 
within 10 % error�9 Fig. 3 shows one example with rational num- 
bers for the cycle time and failure duration. The solid lines repre- 
sent the actual maximum or minimum hold-up and the dashed 
lines represent the maximum or minimum hold-up calculated 

using the equations developed in this study. 
Fig. 4 shows the hold-up profile of an example which includes 

integer valued periodic failure and integer valued cycle times. 
The solid lines represent the exact maximum and minimum hold- 
up calculated using Eqs. (36), (37), (39), (40), (43) and (44). 

The basic assumption (ii) that overall cycle times are prime 
with respect to each other is also inconvenient. The simulation 
showed that the maximum/minimum hold-up calculated by the 
equations developed in this study was the upper/lower bound 
of the exact value when the overall cycle times were not prime 
with respect to each other. 

CONCLUSIONS 

The analytical storage sizing equations have been developed 
for SISO storage under periodical production failure. The cycle 
times and periodic failure times are assumed to be integer value 
in order to carry' out logical development. The resulting equations 
with no failure parameter setting were completely matched with 
the equations of no failure case which were developed independ- 
ently. Therefore, intermediate storage system with periodic pro- 
duction failure was proved to include that of no failure case as 

a subsystem. 
The results of this study is going to be the basis ot designing 

controller or operating algorithm of failure prone intermediate 
storage as well as storage sizing. 

1. A l g e b r a  o f  M o d u l u s  O p e r a t o r s  
A = int[A3 + res[A3 where Ogres[A] < 1 

int[A_+ int[B]]--  int[A] +- int[B] 
res[A_+ int[B]] = res[A] 

If res[-A]~ res[-B] 

int l -A-B] = int [A] - i n t [ B ]  
res[-A- B] = res[A] - resl-B] 

If resl-A] <res[B]  

i n t [ A -  B] = int [A]  - in t [B]  - 1 
r e s [ A -  B] -- resEA] - res[B] + 1 

If res[A] + res[B] < 1 

int[A+ B] = inttA] + int[B] 
res[A+ B] = resEA] + resl-B] 

If res[A] + resl-B]21 

int[A + B] = inttA] + int[B] + 1 
res[A + B] = res[A] + res[-B] - 1 

2. I n t e g e r  D i v i s i o n  R e s u l t  
For the given real z and integers 13~, [32, the integer variable 

ct~ maps one to one and onto the integer variables (% r0 such 
that; 

,:t, ~, + in t [z ]  - ql !3z + rl 

where 

a s =  {0, L 2, ..-, 13~-1} 
rl={O, 1, 2, "", 1~2- 1} 

if and only if GCD([31, [3~)= 1. 
For proof, see Burton (1970). 

The following working expression can be developed using the 
above result. 

�9 .[ cq[3~+z ] ctl[81+int[-z]-r~ 

[ al i3,+z ] _  r l+ res [z ]  
r e s t - ~  J - f12 

A P P E N D I X  B: S i z i n g  E q u a t i o n s  for  S I S O  S t o r a g e  

1. M i n i m u m  H o l d - u p  in D o w n - s t r e a m  D o m i n a n t  C a s e  (Ux 

-<U2) 

t~,,~ - KI _ a~ (o2 + 5~ (02 -I Ke - K1 + int[_ (• + y2)o)~] 
O)1 (-OI 

-+ resE(xe + y2)~o2] (At) 
CO 1 

Two steps of modulation have to be applied for a> 

a~ m~ + 82 o)2 + K2--K~ + int[ (x2 + y2)o~2] = q2'~l 4-C[:~' (A2) 

where 0gct2'-<~l- 1 

a / =  q/'coj § r (A3) 
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where 0<a~"<~oi- 1 

res -- = 
031 

r s[res[ ]tOtl_ ct/' + res[(x2 + yz)o.~] (A4) 
L L COl JtOIJ COl 

2 ~ 
_ ~ . -  _z-  Yz o.'2 = ct2 + (82 + x2 )~  (A5) 

toe toe 

res[t:,.- ~-ye.~ t (~+x2~ 

intrresre..- - y2 ]@12,2 
L L ~ J(~J 

Y=~ : 
L L s JtO2J 

Inserting Eq. (7) in the main text, (A4) and (A6) into (8) in the 
main text gives; 

v< 
\ tO1 l \ @O, t 

+ V(0) + Kt B t -  Ke B2-  B2 
+ B~ y i ( ~ -  K~ + int[-(x2 + y2ko2]) 

tot 

+ B , ( -  YLct~ +min{y,, q~ 
\ tot 

+ min{1, az" + resl-(x~+ye)o~].}}/ (A7) 
Xt to, / 

The first term of Eq. (A7) can be removed by Eq. (6) in the main 
text and the coefficient of 82 in Eq. (A7) is negative which means; 

rain V(~,)(~) = V(~,)(max 62) = V(~.~)(Sz = y z -  1) 

B i g t ~  
= V ( O ) + K i B t - r ~ B 2 - B , + (  ~ l - B ~ ) ( y z - 1 )  

4" B, yt(Kz- K, + i_ntl'(x2 + yz)o~e]) 
COt 

+ min{l, ct2" + resE(x~ + Ye)~ ~t/  (A8) 
Xt tot ~ /  

We have to separate the span of searching variables into three 
parts to develop minimum functions. 

(i) az'27~ tot (A9) 

qe"~>yt (A10a) 

minlyt, qe"+ -" } =Y1 (A10b) 

Inserting Eq. (A10) into (A8) produces; 

V(~.) = V(0) + Ki B t -  (K2 + yz)B2 
+ Bt cot((yz - lko2 + Kz -- K t + int [(x2 + yz)toe]) 

tot 

- B  (YLa2' - y  0 (Al l )  
' \  03 t 

The coefficient of ct2' is negative which means: 

minV(t~.)(az') 
a 2' 

= V(t~.)(max a ;  = ~ , -  1)= V. ~ . 
= V(0) + (Kt + yi)B,-- (K2 + ya)B2 

B1yI((1- ~1+ (ye-  1)(m + K2-- Kt + int[(x2 + y2)o>2]) 
m 

tO, 

(ii) Ctz'<y1 tol and xt tot -- resLtx2ty2Ko2d~txz.r._--~ 

rain{l, az"+res[(xe+yx)or2] } : 1  
Xt tot 

(AI2) 

(A13) 

(A14a) 

min{yt, q2" + min{-..}}= q2"+ 1 

Inserting Eq. (A14) into (A8) produces; 

(A14b) 

V(t~.) = V(0) + K t B1-  (Kz + ye)B2 
-t B, yt((ye- lkoe+Kt~Ke+int[-(xe+y2~2]) 

tot 

+B,[ - ("-to'- 1]q; +,1 <A s) 
0), \ (D 1 ] d 

The coefficient of a "  z is negative and that ol qz" is positive which 
means; 

rain. V(t~.)(a~", qz") 
22 .q2 

= V(t~.)(max o.2" = cot - I, min qe" -- 0) = V~..2 
= V(0) + (K, + l ) B t -  (K2 + y2)B2 

_~ Bt Vt(1 - tot + (V2-1~2 +K2-  Kt + int[(x2 + y2ko2]) (AI6) 
tOt 

The left side of second inequality in Eq. (A13) should not be 
greater than to , -1 .  This imposes some restriction for Eq. (A 
16). 

RESTRICTION $3: 1-resr(x2+y2)o2]K(1-xtXo,  

(iii) Ctz' <Yt tot and xitot - res[(x2 + ye~,'2"l~az" (A17) 

rain{l, ~2"+res[(x~+yz)~o.~] ]_ae"+res[ (xe+ye)me]  (A18a) 
Xt tot XI tot 

minlyt, q / '+min l . "}}=qe"+  ctz"+resl'(xe+y~:ko~] (A18b) 
XlO)l 

Inserting Eq. (A18) into (A8) produces; 

V(~.) = V(0) + Kt Bt - (K2 + y2)n2 + B, res[(xz + Y2)~] 
X] tO, 

+ B, Yt ((Y2- lkoz + n2 ~ K, + int[(x2 + y'2)co2]) 
(O1 

+B,[(x'<,>, .J <A19) 

The coefficients of cte" and qe" are positive ~hich means; 

mm.V(t~.)(ct2 , qe")=V(~.)(min cte"=0, rain qe"--0)-V~,- 3 
ct2 .q2 

= V(0)-  xt B1-  (K2 + ye)Bz + B, res[(x2 + Ye~z] 
XltOt 

4 Bt Yt((Y2 - 1)o>2 + K2 ~K1 + int[(x2 + yekoe]) (A20) 
60, 

The left side of second inequality in Eq. (A17) should not be 
less than 0, This imposes some restriction for Eq. (A20). 
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RESTRICTION $4: x~(01kresE(xz+yz)(02J 

2. M a x i m u m  H o l d - u p  in  U p - s t r e a m  D o m i n a n t  C a s e  ( U ~ > U 2 )  

t ~ - - ~ l  = a~ 4 (81 +xt)03, (A21) 
(or (0! 

res - = 
(0, 

r e s [ r e s [ ~ ] ~ ]  = xt (A22) 

t ~  - K 2  - Y2 0)2 _ ctt ~, + 5~ wt + x~ - ~2 + intEx~ (01 - Y2 03~ ] 
(02 03~ 

+ res[x, w2- y2 (02] (A23) 
0)2 

We have to apply two steps of modulatkm procedure for ct,. 

at ~1 + 8, (or + ~ - ~ + int[xt (0, - y~ ~o23 = qt'~z + a (  (A24) 

where 0_<2a, 's  1 

Ch' = q~"0)~_ + (11" (A25) 

where 0-<-a~"-<(02- 1 

i n t [ t , ~ - ~  7 Y2 (02] = q, , 
I_ (02 J 

res[t,~ -- ~:--~ - y2 (02 t o d '  + res[x~(0t--y20)2] 

in t [ res[ t~  ~_~ y2 032l;2l = q," 
k k 0>2 J0)2J 

res[res[ t~ - ~ -  y~ ~___~_~] : o.," + res[x, 03t- y~ 03~] (A26) 
2 (02 

Inserting Eq. (7) in the main text, (A22) and (A26) into (8) in 
the main text produces; 

+V(0)+ ~t Bt-~2B2 Bz u ~ + int[x~ 0)t - y2 o~]) 
0)2 

\ Y2:, '  . min{ 1, - B 2 ( - ~  +mm{y2, ql"+ 

%" + res[x, (or -- y2 (02] }}) (A27) 
Xe (-02 

The first term of Eq. (A27) can be removed by Eq. (6) in the 
main text and the coefficient of 5~ in the second term of Eq. 
(A27) is positive which means; 

maxV(t~)(83 = V(t~)(maxS~ = y, - 1) 
81 

= V(0) + (u~ + yOBt - ~2 B~ 
B2 Y~((u + ~1- ~2 + int[ x~ 03t - y2 (02]) 

(02 

+ B2( y2_at' min{y2, q," + min{1, 
', 0)2 

Ct'" + res~Kl 011-- Y2 (02] }})  (A28) 

X2 (02 

We have to separate the span of our independent searching varia- 

bles into three parts to evaluate the minimum, functions in Eq. 
(A28). 

(i) c4'>y2(02 (A29) 

q,"~Y2 (A30a) 

minly2, q~" +.." } = Y2 (A30b) 

Inserting Eq. (A30) into (A28) produces; 

V(t~) - V(0) + (k~ + yOBI - k2B2 

Bz y2((Yt - i)031 + K1-- K2 + int[xl (01 - -  Y 2 0 ) 2 ] )  

032 

O.' 

m axV(t~)(at') 
at 

=V(t~)(max , - 1 a~ = 032-1) = V~ 
= V(0) + (K~ + yl)B1 - (K2 + y2)B2 

B2 y2(1 -- ~z + (u -- 1)0)t + K t -- ~2 + int[xt 0)1 - -  y~ 0)2]) 
(02 

(A32) 

(ii) al'<u and x2(02- res[x: (0~- y2o.~]ga(' (A33) 

min{1, ct'"+ res[xl 03'- Y2~ } = 1 (A34a) 
Xz C0z 

min{u ql" + min{--- }} = q (  + 1 (A34b) 

Inserting Eq. (A34) into (A28) produces; 

V(t~) = V(0) + 0q + y,)B1 - x2 B2 
B2 "/2(@1-1)031 -l- K1-  K2 + int[x~ (0~ - y2 o~]) 

(02 

k 0)2 \ 032 l a 

The coefficient of ct(' is positive and that of qt" is negative. This 
means; 

min V(t~)(a(,  qt") 
al q| 

=V(t~)(max ct~"=tt.~-1, min q"=0)=:V~ 
= V(0) + (Kl + y~)B1 - (t(2 + 1)B2) 

B~'t'2((1 - 0)2 + (~'1 - 1)(0~ + ~ l -  K2 + int[x1031- y2 0>2]) 
O.12 

(A36) 

The left side of second inequality in Eq. (A33) should not be 
greater than (02-1. This imposes some restriction for Eq. (A36). 

RESTRICTION $5: ( 1 -  x2)o221- res[x103~- y20>2] 

Off) ch' <u (02 and X2(-02-- res[x~o)l- yr ~cti" (tk37) 

rain{l, ct( '+res[x,(0,-y2(02]}:o.i"+res[-xta),-yz(02] (A38a) 
X2 (02 Xz O32 

min{y2, q f  + rain{'-'}} = q,"+ at" + res[xt 03~- y2 ~ (A38b) 
X2 (02 

Inserting Eq. (A38) into (A28) produces; 

V(t~) = V(O) + (~:, + u 0B2 - •2 Bz 

(0~ 
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+ + - , )q ,"  
L~O~ XZO~/ \ to2 

res[  x, co~ - y~ o~] l (A39) J Xz (.02 

The coefficients of 0.~" and ql" are negative. This means 0.1 ~ and 
q~" have to be decreased to maximize V. 

m.ax.V(t~,)(0.,", q~")=V(t~)(min oh"=0, min q ~ " = 0 ) = V ~  
al q, 

B2 res[x~ to1 - Y2 ~ ]  
= V(O) ~- (~, + )'1)B1 - K2 B2 - 

X 2 ~  

B2 yd()'x - l ko l+  g~-  ~ +  int[xl to~- y z ~ ] )  
to~ 

(A40) 

The left side of second inequality in Eq. (A37) should not be 
less than 0. This imposes some restriction for Eq. (A40). 

RESTRICTION ,56: xzto2~resrxlco~- y,,ia2] 

3.  M a x i m u m  H o l d - u p  in  D o w n - s t r e a m  D o m i n a n t  C a s e  d-h 

<U2) 

t ~ - - ~ ,  0.2~2 + 6 2 ~  + ~2 -  ~ l + i n t [ y 2 ~ ]  + res[y: ~ ]  (A41) 
to~ 0.)1 

Two steps of modulation have to be applied for a~. 
- -  . ' _ t - -  

ctz to2 + 62 o)2 + ~z - ~, ~- mt [ y2 o~] - q2 to, + 0.2' 

where 0 < c t 2 ' 5 ~ x -  1 

(A42) 

0.2' = q2"tol ~- Q2*' 

where 0K0.z'Kto~- l 

L to, J 

resF-~l-- ~"+ re s[-yzto2] 
L tot  J 0)1 

res[res[_  ]_ 0.; + res[y2toz] 
L L tol J to lJ  to1 

_t,~ "- ~:4- Y., ~-, = a2 + 62__o~ 
0,)2 (O-'2 

i n t [ t ~ - ~ - ~ 7  Y'(~'] -- 0.2 

res yzo~ 6 2 ~  
O)2 to'Z 

(A43) 

(A44) 

(A45) 

res[res[ y, l l=o 
L L to i  J~2J 

Insert ing Eq. (7) in the main text, (A44) and (A46) into (8) in 
the main text gives: 

(, B,18, V( ) = d . .  ~ ,  , , to, -/  

B1 Yt(~z - ~1 +.int[y2 orz]) 
+V(O) ~ I B , - ~ z B 2 +  - -  - 

(01 

+B~(--YLa2' +rain{y,, qd '+min{1,  
09, 

0.2" ~r res[y2 ~ t} ) (A47) 
X t t o l  

The first term of Eq. (A47) can be removed by Eq. (6) in the 
main text and the coefficient of 62 in Eq. (A47) is negative which 
means: 

minV(t~)(62) = V(t~Xmin 62 = 0) 
82 

= V(0)  + K, B~ - ~2 B2 + B1Yl(~z- KL+ int[-y7 ~ ] )  
to l  

+m+ 
(JOt 

X, to ,  

We have to separate the span of searching variables into three 
parts to develop minimum functions. 

(i) a2'>y, w, (A49) 

q2">y= (ASOa) 

min{y, q2" + " "  } = y~ (A50b) 

Inserting Eq. (A50) into (A48) produces: 

V(t~) = V(0) + Kl B, - ~z B-z + B, tol(~2 - KI+ int [y2 o~]) 
LOt 

The coefficient of a , '  is negative which means; 

maxV(t~)(a2') = V(~,=)(min a2' = ~,, to,) = V ~  
a2 

= V(0) + (Kl + yOB1 - ~2 B2 

+ BI T~( - )'~ ~~ + ~2-- ~1 + int[Y~ a~]) (A52) 
to1 

(ii) 0.2'<yloJl and xltol-res[y2eo2]<0.2" (A53) 

mini  1, 0.2" + res[y2~2] }=  1 (A54a) 
Xt (JOt 

mini)',, q2 ~ + mini'-" }} = q.;' + 1 (A54b) 

Inserting Eq. (A54) into (A48) produces; 

V(t~) = V(0) + K1 B, - K2 B2 + Bt )'j(K2 - ~h_ + int[-y2 tozl) 

[ <. .- ] + B, - )'~to~ 0.r + / '  - --~--)q2 * 1 (A55) 

The coefficient of 0.2" is negative and that of qz" is positive. Then, 
maximum hold-up occurs minimum of a2" and maximum of q2". 

rain 0.2" = int[-xt ~l - y~o~] + int[y2~/] + 1 (A56a) 

max q f  = Yl - 1 (A56b) 

q;) 

= V(t,~)(min 0.2". max q2") = V ~  
= V(O) + (K1 + )'I)BI - Kz B2 

+ B[ ) ' I ( -  ()'l - lkot + K2 - ~ t  + intr xl to, - y2 to2] - 1) 
to t  

(A57) 

The left side of second inequality in Eq. (A53) should not be 
greater  than to t -  1. This imposes some restriction for Eq. (A57). 
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RESTRICTION $7: 1 -  res[y2o2]<(1-  x,)wl 

(iii) a / < y l o ,  and x,oJ~ resLy~.oz_t a2 (A58) 

"+ r "+ min{1, ct2 res[y2 2] } _  a2 res[y2mx] 
XI(Dt  Xt  (.01 

min{'h, q/ '  + min{"" }} = q/' + a2" + resl-y2 ~ ]  (A59) 
Xl (I)l 

Inserting Eq. (93) into (82) produces; 

B1 res[y2 o~2] 
V(t~) = V(0) + )q B~ - K2 B2 + 

X1 ~ 1  

+ B, y,()r *:~+ intEy2 o>2]) 
(o1 

,,] 
LkX] (01 (DI ]  \ (01 / J 

The coefficients of a2" and q2" are positive. The maximum val- 
ues o f  12 " 2 and q2" are required to maximize V. 

max Ct2" ---- int[xl o 1 -  y2oJ2] + int[-y~oh] (A61a) 

max qz"=y1-1 (A61b) 

m. ax.V(t~)(ct2", q2") 
a 2 o2 

it 3 = V(t~)(min az", max q2 ) = V2,~ 
B, res[x, oJ, - y2 co2] 

= V(0) + (K, + yl)B, -- K=, B2 
X { 001 

+ BxyI(--(yI- 1)o~l+K2--Kl--int[-xloJl--y2oJz]) (A62) 
(DI 

The ]eft side of second inequality in Eq. (A58) should not be 
less than 0. This imposes some restriction for Eq. (A62). 

RESTRICTION $8: xlo,~resEy2o>2] 

NOMENCLATURE 

B, : batch size 
d, :process failure time 
F,(t) :material flow function 
q, :integer quotient of the search variable 
U, : flow rate 
V..o~ : maximum hold-up 
V..,. : minimum hold-up 
V'.~ :one among three solutions of maximum hold-up 

V(t) : hold-up function 
V(0) : initial hold-up 
Vs : storage size 
x, :transportation time fraction 
y, :initial delay time fraction 
z :arbitrary real number 

Greek Letters 
:integer search variable 

[3, : integer 
& :integer search variable 
yz :number  of batches between process failure 
K, :number  of batches before the first failure 
~, :defined by Eq. (2) 
r : cycle time 
~, :defined by Eq. (1) 

Subscript 
i :1 for up-streams. 2 for down-streams 

Special Functions 
GCD(.,.) : greatest common divisor 
intl.] :truncation function to make integer 
res[-.] :residual function to be truncated 
u[.] :uni t  step function 
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