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Abstract—An analysis has been performed of the capacity of intermediate storage vessels required to buffer the
effects of periodic production failure. Simple analytical expressions for the limiting volume of the storage as a function
of failure frequency and system parameters have been developed for SISO storage system under the assumption
that system variables were integer number. All these simple analytical expressions are directly useful for determining
the storage size and are the bases for more advanced engineering study such as; operations research, controller

design and process synthesis.
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INTRODUCTION

Noncontinuous processes have played and will continue to play
an important role in the chemical industry because of the flexibil-
ity they provide to accommodate significant variability in feed
materials, their suitability for producing large number of moderate
value products with similar recipes, and their turn-down feature
which allows ready adaptation to the inherent seasonability of
the market demand for some products.

This kind of process which is intentionally operated in a non-
steady state mode is subject to various process imbalances. In
multistage noncontinuous processes without intermed:ate storage,
uninterrupted operation is possible only if the successive stages
of processing are perfectly synchronized or the batch equipment
itself is used as storage vessels. In this case, installation of inter-
mediate storage will decouple the periodic operation of adjacent
batch or semicontinuous units; consequently, intermediate storage
can take on an important role for improving operating efficiency.
In addition, batch operations are usually subject to higher proces-
sing variability and more subject to operator vagaries and error.
These kinds of process parameter variations as well as those cau-
sed by equipment failure and associated repair times can also
be mitigated through intermediate storage if adequate size of in-
termediate storage and the initial hold-up are chosen appropri-
ately. Moreover, intermediate storage can isolate intermediates
when noncontinuous processes are used to produce multiple prod-
ucts in sequential campaigns. Due to these kinds of various roles
of intermediate storage, the addition of it gives positive conse-
quences on process operation. However, because of the numerous
roles that intermediate storage serves, it is difficult to specify
its most effective location and required size ‘in the process.

Simulation techniques are the most common tools employed
for this kind of analysis. Numerical simulation using Monte Carlo
technigues can be employed for the analysis of intermediate sto-
rage availability (Ross 1973). Analytical models which have been
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studied recently are effective tools for intermediate storage analy-
sis. Karimi and Reklaitis (1983) developed analytical results for
the limiting storage volume in serial systems composed of arbi-
trary configurations of batch, semicontinuous or continuous op-
erations. They extended their results to multiple input/multiple
output intermediate storage structure (Karimi and Reklaitis 1985
a) as well as parametric variation case (Karimi and Reklaitis 1985
b, ¢) The main idea of their successful results was to assume
periodic material flow which enabled to use powerful Fourier se-
ries properties. The same method has been applied for the peri-
odic material flow including periodic production failure by Lee and
Reklaitis (1988 and 1989).

This article represents systematical procedure to obtain the
analytic solution of the limiting volume of single input/single out-
put(SISO) intermediate storage under periodic production failures
which include no failure case as a subsystem. The unique feature
of this study is that the whole modelling step is remarkably sim-
plified by deleting Fourier series development and generalizing
production failure pattern. Our main technique to get the goal
can be summarized as the Algebra of Modulus Operators and
Integer Division Result (APPENDIX A). This study will directly
contribute to reducing the overinvestment of storage space and
facilities in real chemical industries as well as providing an effec-
tive modeling technique to develop inventory control policy in
noncontinuous processes.

PROCESS MODELLING

The schematic diagram of relevant process and design variables
are shown in Fig. 1. The subscript i=1 represents up-stream
unit and i=2 does down-stream unit. Each unit is supposed to
produce a batch of product during every cycle time (w;) and after
v: cycles, production failure of duration (d,) will occur periodically.
The cycle time of a batch unit is composed of a transport time
(x;w;) and a non-transport time. The non-transport time is the
sum of processing, filling (discharging) and preparation time for
up-stream (down-stream) unit and their details are not of interest
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Fig. 1. Modelling of intermediate storage with periodic process failure.

for the purpose of this study. The starting time of inflow from
the up-stream unit is assumed to be zero, without loss of general-
ity, and that of the outflow to the down-stream unit is assumed
to be y,w,, which is called the initial delay time. The first produc-
tion failure is assumed to occur after «, cycles. It is convenient
to define some additional parameters; the overall cycle parame-
ters (@) and x, as;

o =v,0+d; (H

K=K+ d; 2

The design parameters for no failure case were based on the
use of rational number which is adequate for engineering purpose
(Yi 1992). However in this article we have to restrict some of
the design parameters to integer value. We will investigate the
relaxation of this restriction through simulation study subsequent-

ly.
Basic Assumptions;

(i) w, and d, are integers. 1=1, 2 3

(i) GCD(wn, @2)=1 (4)
where GCD(..) is the greatest common divisor.

The overall material balance on this system gives:

Ble - B'_:Y'.'

o w?

(5

The flow pattern, which include periodic production failure, is
shown in Fig. 1. The material balance around the storage unit
reduces to a simple ordinary differential equation (Yi 1992).
g%i‘t‘) =Fult—k ]+ B ~F Mult—x: — v ] —x:B,  (6)
where F(t) is defined in Fig. 1 and ul[.] is unit step function.
There are three situations to be considered in integrating Eq.
(6) as shown in Fig. 2. The present time t can occur either during
a failure time, during a non-transport time or during a transport
time period. We can count the number of complete batches and
calculate the incomplete batch size in each case via modulation
operators. Combining three expressions with the minimum func-
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Fig. 2. Integration of material flow function with periodic process fail-
ure.

tion produces the following integration of flow under periodic
failures;

t K viox —e—
] Fit)dt= B.(y, int[lw } + miny,
0 [OF
int[res[w ]9] + min{l,
, ;

lres[res[-——————t_'(’ Yo :lg “}}) N
x o; w, 2
The hold-up equation for this system is;

2 ye2
F, (t)dt - f FAOdt F,B,—x:B,  (8)

¢

Vi =V(0)+ j o

0

where t>max{x), kz+ y,@.}.

The maximum and minimum hold-up is necessary in order to
calculate storage size. This hold-up equation is periodic with the
period of ww;. The local optimal points must occur at the edge
points of flow within one period, the same as no failure case (Ka-
rimi and Reklaitis 1983). Thus, it can be shown that:

If U;2U; (Up-stream Dominant Case)

t +(1((x)y+5‘(,0[+K1 (9)

. T+ e K+ x o (10)
where 0<a,<w,— 1, 0<8,<y,—1

If U;<U., (Down-stream Dominant Case)

= 0@y + By wsF Yo 0+ K+ Xe (11)

£ = 0@+ 805t Yo wz + Kz 12
where 0€a@,<w,— 1, 0<8,<y,—

The continuous search variable t can be changed into the finite
integer search variables o, and 8, by inserting Egs. (9)-(12) into
Eq. (7) and (8).

There are four cases which must be considered in order to
carry out algebraic manipulation: minimum hold-up in up-stream
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dominant case, minimum hold-up in down-stream dominant case,
maximum hold-up in up-stream dominant case and maximum
hold-up in down-stream dominant case. There is great similarity
between the four cases but they do differ in detail. The first case
will be considered here and the others are given APPENDIX
B.

MINIMUM HOLD-UP IN UP-STREAM DOMINANT CASE
U, 2Us)

Eq. (9) is inserted into Eq. (7) and each term in Eq. (7) can
be developed further such as;

1 .
X1 4 D (13)
w [O7
K
int s 1)——01
w;
res( t"l"': ‘) 8o
NN O 7] (O3}
y ==
mt[res o Kl)@]—&
W) (O3}
L=
res[res L2 K1>g]10 (14)
[OF] (O
tm ";2 Y22 - a161+810j1+;l—;z“il’lt[yz(x)gj'1
(V7 (0]
—_ i
4 1oresly, @] (15)
@y

Two steps of modulation procedure for o, have to be applied
to convert search variables a; and &, into more convenient search
variables, a," and a,”, following the procedure of modulation of
variables given in APPENDIX A.

a0+ 8,0+ K~ ke—int{ vy ] — 1= g+ a) (16)
where 0<a,' <w:~

a'=q" o+ a” an
where 0<a,"<w,— 1.

The down-stream terms in Eq. (7) can be resolved via new
search variables.

1 _—‘)_

int[ bun K2 y“ll"’] =g’

[O7]
res[t’:"‘ L U)z] _ @'+ 1-resly,]

(O] s
mt[res[ Son K2 7Y “’?]&] —q

2 Wy

res[res[t’:'"ﬁki__yiﬁz]&] _ "+ 1-resly, o] (18)
o2 @ (073

Inserting Eq. (7), (14) and (18) into (8) produces;

V(',:.,,):(Bﬂ/l &;Y)‘Z‘(ﬂ) (Bl BqYZGJ])B}

B ya(ici— e —_int[yz ws]—1)
2

+V(0)+K|B1“K282“

_Bz( RELE +mm{72, Q"

+min1, & 41 sty f) (19)
Xy 9

The first term of Eq. (19) can be removed using Eq. (6). The
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coefficient of §, in the second term of Eq. (19) is positive which
means the minimum of the hold-up function occurs when 8§, is
minimum:

n%}n V(b)) =Vt X8, =

= V(0)+ B, — X2 BZ . B. YZ(K] Kz ‘;T)lnt[yz 0-)2] — 1)
2

a’ . .
+ Bz[ - .Y%; + mm{Yz, Q-+ mun{l,

Xa (2

(20)

It is necessary to separate the span of our independent search
variables into the three parts within which the hold-up is linear
with respect to the search variables in Eq. (20), namely; {a,'>Y,
ol {ou'<yz@, and 0, —1+resly,]<a;"} and {a'<y,w. and
X, — 1+res[y2]20,"}.

(i) &' 2200 @1

In this case, the following useful relationships are valid:

0" 22 (22a)

min{y,, q,"+-}=vy, (22b)
Inserting Eq. (22b) into (20) produces;

V) = VO +x, By By D2 e intlyrr] 1)

(0]

+B<Yi:1 —y) 23)

Now, a,' is the only remaining search variable. The minimum
of hold-up occurs when a," is minimum because the coefficient
of a; is positive.

min Vit )@= Vit Mo = v200) = V.,

=V(O0)+x B~ (K2+Y2)§2
_Beva(—yeont i — Kz_lnt[)'z(l)z] 1)

(29
(O]
(i) a/'<y;0; and x:w,—1+res{y,w:]<a,” (25)
In this case, the following useful relationships are valid:
min{L E_*_LL“M}:I (262)
X2 2
min{y;, q,"+min{---}}=q,"+1 (26b)
Inserting Eq. (26b) and (17) into (20) produces;
V)= V) B, By~ Dt Zintlven] 1
2
+B, [Y““ <—Yi“’2 —1)q{'~1] @n
w2 ) /

Since the coefficient of a,"is positive and that of q," is negative,
a;” has to be decreased and q,” increased to minimize hold-up.
Thus,

min a;” = int[(x;+ y)o,] — int[y; w, ] (28a)
max ¢,"=y,—1 (28b)

Then, the minimum hold-up is:
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min Vit a", @)
=V(t,,1,,,)(mln (11”, max ql")::vfm
=V(O0)+x B — (k2 +v2)B,

_Boya— (2= Denn+x —_;2 —int[{x:+ yo)wp ] — 1)
2

(29)
The left side of second inequality in Eq. (25) should not be greater
than w;—1. A restriction is imposed on Eq. (29).
RESTRICTION S1: res[y, o] <(1— Xz)w
(i) o)’ <y,w; and X,m:— 1+ res[y.m:]>0a," 30)

In this case, the following useful relationships are valid:

"+1- ) "+1- .
min{l, a”+1—res[y, ;] }:al 1—res{y;w;] (31a)
Xo (2 Xo @y
"1
min"yz, Q1"+ min{.._”:ql,,_’_(h—lreiy_zﬂz;] (31b)
X2,
Inserting Eq. (31b) and (17) into (20) produces;
Vi) =V0)+ kB~ B~ rl e iy, ]2 D
2
+Bz|:(°¥ S L )(11”+(MY2—0)2 *l)q;”_—l_—reS[y—zwi]]
w2 Xa2 (G73 X2 0)2
(32}

Since the coefficients of o,” and q” are negative, a,” and q,”
have to be increased to minimize hold-up. Thus,

max a,” = int[ (x, +y2)e.] —intly, @] — 1 (33a)
max q,"=y:—1 (33b)

Then, the minimum hold-up is;

pl_agg_V(t,L,,)(ax". a;”)
=V, (max a,”, max )=V’
B res[ (x;+ y2)w;]
X 2
_ Bov(= (= Dot k1~ e — int(xo + yo)o )
(O]

=V(0O)+x By~ (ke +y2)Bo+

(34)

Since the left side of second inequality in Eq. (30) should not
be less than 0, a restriction is imposed on Eq. (34).

RESTRICTION $2: x,w:21—res{ysw,]

Egs. (24), (29) and (34) give three candidates for the global
minimum hold-up subject to two parametric restrictions. Careful
comparison between these equations reveals that the hold-up cal-
culated by Eq. (29) is less than that by Eq. (24). If system parame-
ters violate RESTRICTION S1, Eq. (29) is not valid and Eq. (24)
and (34) are the candidate of giobal minimum. If system parame-
ters violate RESTRICTION S2, Eq. (34) is not valid and Eq. (29)
is the only global minimum.

STORAGE VOLUME
Summarizingly, all pertinent equations from the previous sec-
tion and APPENDIX B, we obtain:
Up-stream Dominant Case (U;2Uy)

Vrlmu =V{0)+ (x; +y)B1— (k2 + v2)B2

__Beyrf(— o= D+ — Do+ xi — e+ int{xi00 — yoz])
[07]

(A32)

Vi = VO + (ki +y)B1 — (ko + 1)By o
- BzYz(_(U)?—l)+(Yx“l)mlj'Kl_Kz‘l”int[:Xlw]‘Yzwz])

w2
(A36)
Vi = VO + (<1 + y1)Bi — ko By — Byreslxi 01—y, @]
X2
_ BzYz((Yl‘1)(1)1+K1—_K2+im[xlwl”yzwzj) (A40)
@2
V5= V(0) + 6, By — (ko + y2)By
_ BzYz(“Yz(Dz‘H(l:Kz —intlys@]—1) (24)
%
V= VO + x1 B~ (ke +72)B
_ By Dtk — int[(x,+ yz2)we]— 1) 29)
2
’ y 2+ o)
V:nn =V(0)+Kk B — (k2 +v2)B: + Byreslix tyde resL(x. y“)uzl‘
X2
_Bev(—(z— Dy +;1_“;2+ int[ (X, + yz)w, ) (34)

w2
Down-stream Dominant Case (U, <Uy)

Vo =VO+ i+ y0Bi— (et y2)B,
Biyi(— (@1~ D+ (e~ Den — K1 + ko + int[xp + yoJen )
W

+

(Al2)

V., =VO+ 0+ DB~ (k. +y)B:
_ B (o= D+ G- Dup—xit e+ intlx, + y2)or )

(071
(A16)
- + v,
Vi, =V(0)+x.B, —(sz)gﬁﬁrss(%_@g@
1
+ Bivi{(y:— Dws—x, t;z +int[ (x2+ ya)o.]) 420)
w,
V= VO + (k1 +11)Bi — K2 By
+ B, Yl( Y101 — KL+ Kyt mt[yza)zj) (A52)
(O}
V2= VO)+ (x;+v)B—x:Bs
+ Ble(— (Y' — Do~k +52 — in[[x, [0 /] mz] -1 (A57)
(O]
V2, = V(0)+ (ky + 70)B1— ks Bo — Bires[xio—yewe]
X1
B Do kit mintlxoyod) g0

[OF]

Careful comparison of three maximum/minimum hold-up ex-
pressions shows that one of them can be deleted and the remaining
two expressions can be combined into one to yield:

Up-stream Dominant Case (U;2Us,)
V2L <Vi. (35a)
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Viw 2V, (35b)

Vaw=max{VL_, V3_|
=V + (x, +v1)B, —x.B;

B.v: f—E i
— == Doyt K-k intx o ywr)

_B min{l, azres[xlm,—yzwz]}

(36)
X2Y2002

w2
V... =min{V% . VI |
=V(0)+x,; B, —(x;+v2,)B;
——%—“ { = (2= g + %1 — ko + int[ %, + y2 ko |

" Bin min{l. o, resl (x2 + y2)o,] }
[0 X2Y2002

37N

Dowm-stream Dominant Case (U,<U,)
V. sV, (38a)
Vin2V., (38b)

Voo =max{V:_, V>_}
=V(0)+ (x; + v)B—x2 B,

B.y: X —K+1i
_ é:- {(ys— Do +x — 2+ int[ x, 01 — Y2 2]

_B min{l. wureS[xlwl—yzwz]} (39)
W, X1Y1 0y

Vo, =minfV, Vo |
=V(0) +x, By~ (x:+ v2)B2

- % | = (41— Do+ 6, — % + int[ (2 + Yo } }
w res[(x; + y2)w,) }

X1Y)n

+ Bere min{l, (40)
(073

Comparing the equations between two cases shows that they are
—-)or( m‘—). If we

X110 XY 02

set the parameters to those of the no failure case, namely y,=1,

x=x=0, ®;=w, =P, and w,=w, =B, then, the equations reduce

to exactly the same as those of no failure case which were devel-
oped independently in Yi (1992).

the same except for the terms (

Vo =V(0) + B,

~gi(int[m 32_y2g|]+min{l, ES[A{ZE.———M‘L]}) “v

V= V(0) + B,
_ g_:(int[(xﬁ yB:] + min{L 19&@;&_)&1_ })

42)

where k=1 for U,<U,
k=2 for U>U,
It should be noted that Eq. (41) and (42) are still valid when
the cycle times are rational number and are not prime to each
other in spite of the basic assumptions (i) and (ii).
Let us emphasize the restrictions and their related equations
again.

RESTRICTION S1: res{y @] <(1— kw2 Eq. 29)
RESTRICTION S2: x,e21—res(y, ;] Eq. (34)
RESTRICTION S3: (1—x,)>1—resL(x;+ y2)we) Eq. (A16)
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Fig. 3. Hold-up profile of example with real valued cycle times.

RESTRICTION S4: x, @ 2res[ (x;+ y;)o.] Eq. (A20)
RESTRICTION S5: 1—res[x, o~ y,0.)<(1~x;)0, Eq. (A36)
RESTRICTION S6: x;m;2res[x w - y, w,) Eq. (A40)
RESTRICTION S7: (1—x)w 21 ~res(y;w,] Eq. (A57)
RESTRICTION S8: x,w 2res{y.w;] Eq. (A62)

Each restriction is connected with the validity of the equation
from which it derives. For example, if design parameters violate
RESTRICTION S1, Eq. (29) is not available and the minimum
hold-up can be calculated by Eq. (24) and (34) in up-stream domi-
nant case. RESTRICTION S3 and S5 are not necessary because
their corresponding equations can not become the maximum or
minimum of hold-up from Egs. (35a) and (38b). The global maxi-
mum or minimum when system parameters violate one of the
restrictions can be summarized as follows:

Up-stream Dominant Case (U,2U,)
Violation of RESTRICTION Sl1.. V,..=min{V3_, V! | (43a)

Violation of RESTRICTION S2.. V.= V2, (43b)

Violation of RESTRICTION S6.. V.= V. (43c)
Down-stream Dominant Case (U,<U.)

Violation of RESTRICTION S4.. V,.=V!. (44a)

Violation of RESTRICTION S7.. Ve =max({V2,, V..| (44b)

Violation of RESTRICTION S8. V., =V:_ (44¢)

If the restrictions are examined carefully, they eliminate the
parametric domain with large x, (RESTRICTION S1). small x,
(RESTRICTION S2 and S6), large x, (RESTRICTION S$7) and
small x, (RESTRICTION S4 and S8) which are unusual in prac-
tice.

The maximum/minimum hold-up equations developed in this
study can be utilized to calculate the storage size and initial inven-
tory in conjunction with the following conditions (Karimi and Rek-
laitis 1983):

Ve SV, (45a)
Va0 (45b)

DISCUSSION AND SIMULATION EXAMPLES

The basic assumption (i) [Eq. (3)] restricts cycle times and fail-
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Fig. 4. Hold-up profile of example with integer valued cycle times.

ure durations to integer values in the SISO storage under peri-
odic failure. The storage designer can scale the systern parame-
ters to make cycle times and failure times integer valued but
this can be very inconvenient. Extensive simulation has shown
that this integer restriction can not be relaxed to rational numbers
in general. Specifically, the simulation showed that if the basic
assumptions are violent, the maximum/minimum hold-up calculat-
ed using rational numbers would approximate the actual values
within 10 % error. Fig. 3 shows one example with rational num-
bers for the cycle time and failure duration. The solid lines repre-
sent the actual maximum or minimum hold-up and the dashed
lines represent the maximum or minimum hold-up calculated
using the equations developed in this study.

Fig. 4 shows the hold-up profile of an example which includes
integer valued periodic failure and integer valued cycle times.
The solid lines represent the exact maximum and minimum hold-
up calculated using Eqs. (36), (37), (39), (40), (43) and (44).

The basic assumption (ii) that overall cycle times are prime
with respect to each other is also inconvenient. The simulation
showed that the maximum/minimum hold-up calculated by the
equations developed in this study was the upper/lower bound
of the exact value when the overall cycle times were not prime
with respect to each other.

CONCLUSIONS

The analytical storage sizing equations have been developed
for SISO storage under periodical production failure. The cycle
times and periodic failure times are assumed to be integer value
in order to carry out logical development. The resulting equations
with no failure parameter setting were completely matched with
the equations of no failure case which were developed independ-
ently. Therefore, intermediate storage system with periodic pro-
duction failure was proved to include that of no failure case as
a subsystem.

The results of this study is going to be the basis of designing
controller or operating algorithm of failure prone intermediate
storage as well as storage sizing.

APPENDIX A: Modulation of Variables
1. Algebra of Modulus Operators
A=int{AJ+res[A] where 0<res[Al<1

mt{A+ int[B]]=int[A]* int[ B]
res[A+ int[B]]=res[A]

If res[AJ2res[B]

int{A~BJ]=int[A]—int[B]
reslA—B]=res[A] —res[B]

If resLA]<res[B]

intfA—B]=int[A]—int[B]—1
reslA—B]=res[A]—res[B]+1

If res(A]+res(B]<1

intfA+B]=int{A]+int[ B}
reslA+Bl=res[A]+res[B]

If res(A]+res[B]>1

mt[A+Bl=int[A]+int[B]+1
resLA+Bl=res[A]+res[B]—1

2. Integer Division Result

For the given real z and integers fi, B, the integer variable
o, maps one to one and onto the integer variables (q;, r1) such
that;

oy 31 + int[l] =4 Bz+ I
where

(14:{0. l, 2, ey, Bg“’l}
I‘]Z{O, 1, 2, sy, Bz_ll'

if and only if GCD(B,, B)=1.
For proof, see Burton (1970).

The following working expression can be developed using the
above result.

im[ % %{” ]:qlz “lﬁl+igf[z] -,
res{ a’%"” ]: r1+r[;as[z]
z 2

APPENDIX B: Sizing Equations for SISO Storage

1. Minimum Hold-up in Down-stream Dominant Case (U,
<U)
oK @t Swt K~ Ky +intL (% + vo)w, )
(O] 61

N res[(xgj— y2)w: ] A1
L)1
Two steps of modulation have to be applied for a..
w2+ 8, 0n ke — Kk + il (X, + v 1= qo o + ot (A2)
where 0<a,’ <my—1
' =g w o (A3)
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where 0<a;"<w;—1

. =
int[—t'"—"' L ]=qz'

)]
res[ tfln:;l ]: (lz"*'res[zixz"’ ya)w]
(0] [OT)
2 _— =
int[res[i”:—&]g] =q,"
(O] w
7 _ T oA "
res[res[ br — K1 ](ﬂ]: az” + res[ (% + yz)w, ] Ad)
[0 (O3} [ON
2 —— o
LS /10 T B+ xg)ur (A5)
D (0%
2 ——_ p—
mt[w&} =q,
g
,es[ci,— K~ Y200 ] _ (Bot X
(0] J W2

. = i
res[res[ L= 10 %] =% (A6)
2 o

Inserting Eq. (7) in the main text, (A4) and (A6) into (8) in the
main text gives;

© B
(B2 o (B
1
+V(0)+ Ky Bl— Ksz" B2

+ Biyilce—: +_iflt[(xz + y)a,])
(O]

+ Bl( N | min{y‘, Q"
w

ay” +res[ (xo+ ¥z }})

X1

+ min{ 1, (A7)

The first term of Eq. (A7) can be removed by Eq. (6) in the main
text and the coefficient of 8, in Eq. (A7) is negative which means;

min V(E2)6)= V({5 ) max 8)= V()6 =v.—1)

=VO)+ By By Byt (P12 g - 1)
1

" Biyile—x +Elt[(xz +ya)ael)
(O]}

o3 . Y
- B:(x‘—-2 - mm{yx, a

3 az” + resl (x: + yp)o, ] }})

X 0y

+ min{l. (A8)

We have to separate the span of searching variables into three
parts to develop minimum functions.

{® a2y (A8}
Q"2 {A10a)
minly, @+ }=n (A10b)

Inserting Eq. (A10) into (A8) produces;

V(E,)=V(0)+x: B — (k2 + Yz_)Bz _
" Bio((y:— Dws+x2 —Ki +int{ (x; + y2)w,])
[O]]

—B,( 1 = ALD)

1

Jaouary, 1995

The coefficient of ;' is negative which means;
minV(t,, X))

=V(t2, Xmax ay’ =0, — )=V,
=V +x,+ Yl_)Bl —(xz+ Yz)Bz_ _
_ B~ (p— Do+ K=k + int[ (2 + y2)oa1)

n
(A12)
(i) o’ <y 0, and x,0;—res( (X +y)w,1<a," (A13)
min{l, a.” +res (x,+ YZ)(DZJ }: 1 (Al4a)
X0
min{y,, @' +min{--}}=g"+1 (Al4b)
Inserting Eq. (A14) into (A8) produces;
V(ti,,) = V(O) + Ky B] - (K2+ YQBz _
+ Biyi((y2— D+ —Kp +intE(x. + y.)w:])
(O]
+Bl[—@ —(@1—1)(;2%1] (A15)
[0} [ON

The coefficient of a,” is negative and that of q,” is positive which
means;

afzﬂgnﬂ, V(tf.,.)(az”, ")
=V(%,)(max a;'=m;—1, min q,"=0)=V%,
=V(0)+ (k1 + DB - (ko + v2)B2

I Biyi(1—w+(&;— D t—!Ez — K+ int{ (xz 4+ y2)al)
(V]

(A16)

The left side of second inequality in Eq. (A13) should not be

greater than @, —1. This imposes some restriction for Eq. (A
16).

RESTRICTION S3: 1-—res[(xx+y2)m:]1<(1 —x)w;

(i) o <y;; and X0, — res[ (6 + y2)o0 1> a;” (A17)
min{l, az" +res[ (2 + yoJwl }:dz +res[ (x; + yz)wz] (A182)
X1 Xiun
minfys, @"+min{-]} =g + 2"+ res( (%, + yo ), ] (A18b)

X1y

Inserting Eq. (A18) into (A8) produces;

VL) = V(O kB, —(cy+ B, + LEesLlet yoloe]
1Wh
4 By ((y:— D +x; :;1 +int[ (x, + yw,])
[(]
+B,[( 1 —Q)uz'ur( -1 qz”} (A19)
Xié0; (0T 3y

The coefficients of a,” and g," are positive which means;
min V)", @)=V, )min "=0, min ¢"=0=V,,

By res[(xa+ y2)w.]
X
N B v:((y:— Do+ % —K +int[(x: +yo)we])
(O3]

=V(0)—xB;— {xz +v2)B+

(A20)

The left side of second inequality in Eq. (A17) should not be
less than 0. This imposes some restriction for Eq. (A20).
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RESTRICTION 84: X1 (1)12f€S[(X2+y'2)0)2:|

2. Maximum Hold-up in Up-stream Dominant Case (U,;>U)

R
— +
tmx# K1 —a,+ & *Xl)ﬁ)l (A21)
()] @,
=51
int| "= =0
[0
res[ t»im:Kl] @t x)oy
()] @
R
int[res = Kl“]gl]:&
o (O3]
P
e SE P 2)
(O] [O]]
e o @1+ 8w+ — T intlx v, ]
62 (—!)l
L reslxion—y00) (A23)
2

We have to apply two steps of modulation procedure for a;.
o1+ 0wy + K~ Ko+ int{xi 01— v, 00] = Qlwn + @y (A24)

where 0<a,/<w;—1

' =q" 0+, (A25)

where 0<q,"Sw:;—1

mt[t"'“ Kz )mz] a’

2
1 s
es[t”"‘ xz ¥2 (1)7] o Fres[x; @ —ya 0]
r —_ —
(Dl (0]

e _
int[res[————‘]t"‘" LY L u—)z]:ql"
[(17) (1))

! " PN ”

— K2 Vo + — v, )

res[res[t"“ K2 y-“’ﬂ“_)ﬁ}z )+ res(x @ — y 0] (AZ6)
n (2 [N

Inserting Eq. (7) in the main text, (A22) and (A26) into (8) in
the main text produces;

Bm‘”‘)&ﬁ&

V) =(Bin- Bz—ﬁ“’;)m (B,

Bz Yz(K1_‘ Kzt lﬂt[xl (O3 £ (—02])
(]

+V(0)+ KlBl'KQBz—

-B( Yl ! +mm{yg, q’ +mm{l

a +res[x\<x)1—y2m2] }})

). o203

(A27)

The first term of Eq. (A27) can be removed by Eq. (6) in the
main text and the coefficient of 8§, in the second term of Eq.
(A27) is positive which means;

maxV(t,,m)(Sx) V(t, Xmax8, =y, — 1)

=V(0)+ (x; +y)B1—k: B:
_ Boyel(yi— Do+ 6— Kz+lﬂt[xlw1 Y2 2)
(Dz

+By — 72(_;‘ —min{ q{’+min{1.

"+ res{ x, 01—y o] }}) (A28)

Xo 032

We have to separate the span of our independent searching varia-

bles into three parts to evaluate the minimum functions in Eq.
(A28).

i) a2y, (A29)
(P27 (A30a)
minfy, q"+-l=y. (A30b)

Inserting Eq. (A30) into (A28) produces;

Vltr) = V(O) + (ki + 7B — koB,
_ Beystyn — Dy +x;,— x2+1nt[x1w1 )
0)2

+B(%“Y) (A31)

maxV(th)r)
=Vt Xmax a)'=w,—1)=V),
=V(O)+ (x; + ‘D)Bl —(ky + Yz)B_z _
_ Boye(l -+ (v — D, +_Kx — ko + int] X, @ — Y2 2))

(073
(A32)
(i) oy’ <y:@; and xewp—res[x; o —yawe]<a,” (A33)
min{1, 2 tresl @i yyon] b=1 (A342)
Xz Wy
minfy,, "+ min{---l=q"+1 (A34b)
Inserting Eq. (A34) into (A28) produces;
Vit )= V(0)+ (ity)Bi—x:B,
_ Bayn— Do+ —Kt int[x; @~ yz 0021}

(073

+B [”“‘ (182 g)qr—1] (A35)
(7] [G7)

The coefficient of a,” is positive and that of q," is negative. This
means;

min VL)@, @)
=V(tL)Xmax a,"=w,—1, min g"=0)=VZ,
=V(O0)+ (xi+v)Bi~ (k2 + 1)By)

_ B:y2((1—wy+ (y1— Do +_;1—E2+ int[x10;— y20])
[0

(A36)

The left side of second inequality in Eq. (A33) should not be
greater than w,— 1. This imposes some restriction for Eq. (A36).

RESTRICTION S5: (1—x2)w,21—res[x; @~y )

(il)) @)’ <ysw; and Xswy—res{ % — v 20" (A37)
min{l, a” +res(x w0 — ye mzj}: ;" +res[x @ — y.0:] (A382)
X0z KWz
. . ” "+ —
minfys, g +minl--1} =g, Lo res[x 0 —va 0] (A38b)

Xy 2
Inserting Eq. (A38) into (A28) produces;
V(f,:,u) =VO@)+(k + Yl)BZ —x; B2

_ Bevl(yi— D +x "_;z* int[ Xy, ~ yp ;1)
(O]
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- ——-——] (A39)
The coefficients of a,” and q," are negative. This means a,” and
q," have to be decreased to maximize V.
mavx,\'(t,",)(al". @)=V, )min a,"=0, min q"=0)=V.,
al 41

Bares(x; o - yaws]
X2 @2

=V(0)+ (x, + y)Bi —K:B, —

_ Bevally: - L)y +x; —_;z'* int( x; @ — y,@2])
07}

(A40)

The left side of second inequality in Eq. (A37) should not be
less than 0. This imposes some restriction for Eq. (A40).

RESTRICTION S$6: x;w.2res[x;w — ys;]

3. Maximum Hold-up in Down-stream Dominant Case (U,
<U2)

G % _ Gont&ortx —xi+intly,w,]+ resly: w,]

o (Ad1)
o o
Two steps of modulation have to be applied for ..
Qzw2+ 8,00+ K2 — X + int[ Yo 2] = q2'r + @7 AL
where 0<a;'Sw,—1
' = Qz"m. +a," (A43)
where 0<a,"Sw,—1
int[—t”‘Q] =q'
(O3}
res[ (:u__ K ]: az + res(y; ]
(O] [N
int[res[ Lo X1 ]‘&] ="
(O o
2 -—_ - ” + .
reS[res[-E‘“_—m]-‘ﬁ‘]zwﬁl i
(O] wy wy
fumremvewr o S0 a5
w2 w>
int[l—;ﬂ—_———xi_ H“" =
W,
res[r“ e 103 P 0
(0] w:
e _." — o 9
int[res[t’"—'w]%] =8,
(O] (V7]
: oz —
res[res[t—"‘— K2 Y200 9_2] -0 A46)
@ w2

Inserting Eq. (7) in the main text, (A44) and (A46) into (8) n
the main text gives;

PRI £.:40 (15700 4 (Binwn )

V)= (P LBy oo+ (S LBy,

SVO) x B — KBy 4 _M%f intlys0))
1

+By( - —Y% + min{yx, q:"+mi"{1-
1

Janusry, 1995

az" + res[yw,]
‘x.ml—m (A47)

The first term of Eq. (A47) can be removed by Eq. (6) in the
main text and the coefficient of &, in Eq. (A47) is negative which
means;

minV(¢,,)8:)= V(L. Xmin 8,=0)

= V(0)+ x, B, x, By + Bk K1+ intlyr 0z
B, t

a,’ . .
+ Bn< - —Y:; S mm{y,. Q"+ mm{l.
1

" +res(y, ;) }
X @ }) (A48)

We have to separate the span of searching variables into three
parts to develop minimum functions.

) a’2y 0 (A49)
"2y (A50a)
minfy,, @“+-}=y, (A50b)

Inserting Eq. (A50) into (A48) produces:

Bioc,— ;f_+ int[y,w.))
[0}

V(Q):V(0)+KlBI —x. B+

a !
- By Y‘&’ —yl) (A51)

The coefficient of @, is negative which means;
n:g_xV(qu,)(az') =V(E)min @' =yi@)=Va,

=V(0)+(x, +y)B, % B_;
L BnCnero-ktintly,wl)

(A52)
(O]
(i) a2’ <y 0 and x 0, —res(y,;w.]<a,” (A53)
min{l, M }=1 (A54a)
Xy
minly,, q"+min{---}}=gq"+1 (A54b)
Inserting Eq. (A54) into (A48) produces;
VIE)=V(0) +x, By~ By 4 L0l Eintlyeen)
1
B LS (1 - Lgr 4] (A55)
(V)Y [O}

The coefficient of a,” is negative and that of g," is positive. Then,
maximum hold-up occurs minimum of @,” and maximum of q,”".
min a"=intlx 0, — o] +int(y: 0] + 1 (A56a)
max q."=y,— 1 (A56b)
2 ” »
a‘;‘.‘%’,‘,‘. V{te Na:", q.")
=V(Z,)(min a;". max q,")=VZ,
=V(O0)+ (x; +y)B, — KzB_z B
LB o Dotk x fintlxy o0 - yaw ] = 1)

@
(A57)

The left side of second inequality in Eq. (A53) should not be
greater than w,— 1. This imposes some restriction for Eq. (A57).
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RESTRICTION S7: 1—res{y, @] <(1—x)on

(ifi) a2’ <y;0; and xm, — res{y,w,]2a," (A58)

. { a2’ +res[yzw.] }_ az” +res[y.w;]
miny1, =
X1 @™ X @

minfy, q.”+min{-}}=q"+ W_"'Z:E%EM (A59)
101

Inserting Eq. (93) into (82) produces;

V()= V(O0)+ ;B — kB + B‘l—r‘f[%"d
1 W1
N BIYI(;2_¥1+ int{ v w,])
)
+Bl[(—l——_L>u2”+(1_Yl—wl)q2”] (ABO)
X1 [O]] [O7]

The coefficients of a,” and q,” are positive. The maximum val-
ues of a,” and q" are required to maximize V.

max az" = int[x; @ — Y@, ]+ intly, 0] (A6la)
max ¢ "=y;—1 (A61b)
max V(£ Xaz", ¢")
ag”. q@
=V(t£,)(min ay”, max q")= V.,
B, res(xio —y,wz]
Xy

+ Biy(—(yi— Dan +?2:E1 —int[x,@;— ya2])
[O]]

=V(0)+ (x; +y)B1—x. By~

(A62)

The left side of second inequality in Eq. (A58) should not be
less than 0. This imposes some restriction for Eq. (A62).

RESTRICTION S8: x, @, 2res[y, ]

NOMENCLATURE
B, :batch size
d;  :process failure time
Fi{t) : material flow function
q  :integer quotient of the search variable

U, :flow rate

V,..e :maximum hold-up

Vpin : minimum hold-up

: one among three solutions of maximum hold-up

rax

V(t) : hold-up function
V(0) :initial hold-up
V. :storage size

X, :transportation time fraction
y, :initial delay time fraction
z : arbitrary real number

Greek Letters

a; :integer search variable

B; :integer

5; :integer search variable

y:; :number of batches between process failure
x, :number of batches before the first failure
x; :defined by Eq. (2)

@, :cycle time

 :defined by Eq. (1)

Subscript
i : 1 for up-streams, 2 for down-streams

Special Functions

GCD(.,.) : greatest common divisor

int(.] :truncation function to make integer
res.] :residual function to be truncated
ul. ] : unit step function
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